Fatigue Characteristics of Laser Welded Zirconium Alloy Thin Sheet
نویسندگان
چکیده
منابع مشابه
Fatigue of Friction Stir Welded 2024-T351 Aluminium Alloy
Fatigue failure characteristics of friction stir welds in 13mm gauge 2024-T351 plate have been assessed. Failure occurred from either the weld region (nugget/flow arm) or from the material immediately surrounding the weld. Fatigue failure from the surrounding material was essentially conventional, initiating from large S-phase intermetallic particles and growing in a macroscopic mode I manner. ...
متن کاملCharacteristics of Resistance Spot Welded Ti6Al4V Titanium Alloy Sheets
Ti6Al4V titanium alloy is applied extensively in the aviation, aerospace, jet engine, and marine industries owing to its strength-to-weight ratio, excellent high-temperature properties and corrosion resistance. In order to extend the application range, investigations on welding characteristics of Ti6Al4V alloy using more welding methods are required. In the present study, Ti6Al4V alloy sheets w...
متن کاملLaser Welding of Thin Sheet Magnesium Alloys
Magnesium and its alloys are active materials, and the oxide can easily form when they react with air and moisture (Czerwinski 2002). In addition, magnesium and its alloys are flammable and require strict safeguards during the manufacturing process. These disadvantages make the processing of magnesium alloys into finished products more challenging. These drawbacks cause defects such as cracks, ...
متن کاملJoint properties of cast Fe-Pt magnetic alloy laser-welded to Co-Cr alloy.
This study investigated the joint properties of Fe-Pt alloy laser-welded to Co-Cr alloy. Cast plates (0.5 x 3.0 x 10 mm) were prepared with Fe-Pt and Co-Cr alloys. Fe-Pt plates were butted against Co-Cr plates and laser-welded using Nd:YAG laser. Control and homogeneously welded specimens were also prepared. Laser welding was performed with and without argon shielding. Tensile testing was condu...
متن کاملImprovement in Fatigue Performance of Aluminium Alloy Welded Joints by Laser Shock Peening in a Dynamic Strain Aging Temperature Regime
As a new treatment process after welding, the process parameters of laser shock peening (LSP) in dynamic strain aging (DSA) temperature regimes can be precisely controlled, and the process is a non-contact one. The effects of LSP at elevated temperatures on the distribution of the surface residual stress of AA6061-T6 welded joints were investigated by using X-ray diffraction technology with the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korean Welding and Joining Society
سال: 2012
ISSN: 1225-6153
DOI: 10.5781/kwjs.2012.30.1.59